
 1

An Evaluation of New and Old Similarity Ranking Algorithms

Paul Lynch, Xiaocheng Luan, Maureen Prettyman, Lee Mericle, Edward Borkmann, and Jonathan
Schlaifer

U. S. National Library of Medicine, Lister Hill National Center for Biomedical Communications,
Computer Science Branch

plynch@mail.nih.gov, luan@nlm.nih.gov, reenie@lhc.nlm.nih.gov

Abstract

The National Library of Medicine's (NLM) IRVIS

project has been evaluating algorithms that determine
which search results in a result set most closely match a
selected search result. This is similar to the "find
related" feature available on some websites (such as
NLM's PubMed), but it operates within the context of
search results that have already been retrieved.
Essentially, it provides a way of re-ranking a results list
in order of similarity to a particular result of interest to
the user.

The similarity ranking algorithms that were tested
included two set-based approaches as well as several
variations on the traditional vector-cosine model. The
algorithms were evaluated using the OHSUMED test
collection from Oregon Health Sciences University.
Surprisingly, the simpler set-based approaches provided
a better ranking than the vector-based approaches and
were also found to be faster.

1. Introduction

The NLM is developing a single access point to all of
its online information collections, known as the
Gateway (http://gateway.nlm.nih.gov). Search result
sets in the Gateway can be large and difficult to navigate
due to the heterogeneous data being accessed.
Providing navigation assistance is one of the goals of the
Information Retrieval and Visualization (IRVIS)
project. The IRVIS project is exploring new ways of
organizing and presenting search results, characterizing
available data, and assisting the user in formulating
queries. As a part of that work, we are designing a
visualization that we call "Neighbor View", which is
intended to show graphically which search results are
most similar to a target search result selected by the
user.

In order to develop such a system, we needed an
algorithm for measuring the similarity of one search

result's text to another. Some systems, such as the
National Library of Medicine's (NLM) PubMed website
(http://www.pubmed.gov), prepare special indexes in
advance so that when a request is made for a document's
"neighbors" the system only has to check static files [1].
In our case we did not have that option, because we are
developing the visualization as a package which existing
client systems (e.g. web-sites) could use. That design
decision also meant that the Neighbor View package
would not necessarily have access to the complete
search result set all at once, but only to the sub-set given
to it by the client system. It was therefore necessary to
develop a similarity ranking algorithm that would
perform its calculations on the fly and that would
operate on the sub-set of search results given to it by the
client system.

It quickly became clear that the code-base for the
similarity ranking algorithms would be large enough to
be a package in its own right, and we made the decision
to separate it from the Neighbor View visualization.
The Similarity Ranking Algorithms package now
contains several ranking algorithms and a variety of
term weight strategies. The following nine algorithms*
are the subject of the testing being reported here.

2. Algorithms

Each of the rankers (ranking algorithms) take as
input the target text string (the search result for which
similar results are desired), and list of context strings
(the sub-set of search results provided by the client
system). The rankers work by comparing each context
string against the target, getting a similarity score for
each, and then ranking the results according to the
scores.

Several of the rankers described below are based on
the traditional vector space model introduced by Salton

* “Algorithm” here is used to denote a particular kind of
similarity ranker in combination with some number of term
weight strategies.

 2

[2]. For these rankers, each string is regarded as having
an associated vector of numbers* in which there is one
number for each unique term in the entire context of
strings, with the number representing that term’s
importance for that particular string. The index that
corresponds to a given term is the same for each vector
so that vectors for different strings can be compared.
One can then consider the angle between two such
vectors (in n-dimensional vector space, where n is the
number of unique terms in the context) as a measure of
the similarity between the texts. This is because an
angle of zero would mean that the documents had
identical term sets, while an angle of 90 would mean the
documents did not share any terms. Usually the cosine
of the angle is used as the measurement of similarity,
which gives larger scores when the vectors are close
together and smaller scores when they are farther apart.
(For a more complete explanation of the vector-cosine
approach, see Appendix II.)

The cosine of the angle can be computed by
normalizing the two vectors and then taking the dot
product. For the vector-based rankers, we implemented
the normalization as one of several types of optional
term weight strategies, which affect the “importance” of
a term by changing the numbers stored in the vectors.
This means that after applying any term weights, we can
just use the dot-product for the score, i.e.:

∑
∈

≡
BAt

ttbaS
I

where t is a term shared by both texts A and B, at is the
term's weight in text string A's vector, and bt is the
term's weight in text string B's vector.

2.1. Set Ranker

This ranker computes a similarity score by treating
the two strings as sets of (unique) terms A and B, and
taking as the score S the ratio of the number of terms in
the sets’ intersection to the number terms in their union,
i.e.:

BA

BA
S

U

I
≡

(This is the "Jaccard coefficient" for two sets.) The
idea here is that if the strings are related to each other,
the term sets will be more likely to have a larger
intersection (and a smaller union). If the strings were
identical, the intersection would equal the union, so

* Although the concept of a vector was used, we found that

there was a 50% time savings to do the implementation using
hash maps (of terms to weights) instead of vectors.

dividing by the union's size gives us a number between
0 and 1.

2.2. Word Length

This ranker is very much like the Set Ranker, except
that the terms are weighted according to their length,
i.e.:

∑

∑

∪∈

∈≡

BAx

BAx
xlength

xlength
S

)(

)(
I

This algorithm is based on the hypothesis that, in
general, longer words are more likely to represent the
subject of a text string than are shorter words. We were
not sure this was correct, but it seemed plausible. (As
discussed below, our tests indicate that this guess is
correct; this algorithm outperforms the others listed
here.)

2.3. Aslam-Frost

J. Aslam and M. Frost [3] have proposed an
information-theoretic approach to measuring the
similarity between strings of text based on work by D.
Lin [4]. Their formula calculates the similarity score
for two strings A and B as follows:

∑ ∑

∑

+

⋅
=

t t
tBtA

t
tBtA

tptp

tpp
S

))(log())(log(

))(log(},min{2

,,

,,

ππ

π

where t is a term, π (t) is the fraction of context strings
containing t, and pA,t is the ‘fractional occurrence of
term t’ in A (the term count for t in A divided by A’s
word length).

2.4. Simple Vector

This is the simplest of the vector algorithms. The
terms were completely unweighted, so the numbers in
the vectors were either 1 (the term was present) or 0 (the
term was absent).

2.5. Vector SW,N,IDF,PML

This algorithm is the same as the "Simple Vector"
approach above, except that four types of term weights
are applied (in sequence): Stop Words, Normalization,
Inverse Document Frequency, and PubMed's local term
weight. Each term weight strategy operates by
multiplying the elements in a string's vector by a
(possibly varying) number. Depending on the kind of
term weight strategy, the factor that a given element in

 3

the vector receives might depend on the term, the
number of elements in the vector, or the context. These
four strategies are described in detail below.

1. Stop Words (SW): Each element of the vector
that corresponds to a term found in a set of 366
commonly occurring words is set to zero. The
other weights are left at one.

2. Normalization (N): Each number in the string's
vector is divided by the length of the vector
(the square root of the vector's dot product with
itself). This causes the vector to have length 1
(as measured in vector space).

3. Inverse Document Frequency (IDF): This is a
commonly applied global weight (i.e. one that
is based on the context as a whole rather than
on the individual text string whose vector is
being weighted). Each element in the vector is
multiplied by a factor which is smaller if the
term for that element occurs in many of the text
strings in the context. Specifically, the
weighting [5] used for a given term is:









n
N

2log

where N is the total number of strings in the
context, and n is the number of strings containing
the term. This formula gives terms that occur in
fewer documents a higher weight than terms that
are more common.

4. PubMed Local (PML): This is a local term
weight (one that depends on the individual text
string, rather than the context) used by the
PubMed website. The formula [6] is:

1* *1
1

−+
≡ fdw lene

l
λα

where lw is the local weight, α=0.0044, λ=0.7,
dlen is the total number of terms in the string
including duplicates, and f is the number of times
the term occurs in the string. Because λ is less
than 1, this formula gives a term a higher weight
for a particular term when it appears frequently in
that text string.

2.6. Vector SW,IDF,PML

This is the same as the previous algorithm except that
the vectors are left unnormalized, to allow us to see the
effects of normalization.

2.7. Vector SW,N,IDF,TF

This is the vector algorithm with four term weights
applied: Stop Words, Normalization, Inverse Document
Frequency, and Term Frequency (TF). The first three
weights are the same as described above for “Vector
SW,N,IDF,PML.” Term Frequency is a typical local
weight that gives terms a higher weight value in
documents where they occur more frequently. The
specific form of this weight we used was the augmented
normalized term frequency [7], which is:









+≡

d

dt
w m

m
l *5.05.0

where lw is the local weight for a term t in a string d (for
"document"), mdt is the number of times a term t occurs
in d, and md is the maximum number of times any given
term occurs in d.

2.8. Vector SW,IDF,TF

This is the same as the previous algorithm except that
the vectors are left unnormalized, to allow us to see the
effects of normalization.

2.9. Vector SW

This is the vector algorithm with only the Stop
Words term weight applied.

3. Testing the Algorithms

We decided to test the similarity ranking algorithms
using the OHSUMED test collection [8] (developed by
Dr. William Hersh, and others) from Oregon Health
Sciences University. The collection* consists of 5 files
of 348,566 MEDLINE records (which are mostly
journal article citations), a query file with 106 queries,
and files which list documents (the MEDLINE records)
that have been judged by people (physicians) to be
either relevant, possibly relevant, or not relevant to the
queries. The OHSUMED version of the records
contains selected fields from the full MEDLINE record,
including basic things such as title, author, and journal,
as well as things like subject keywords (MeSH), the
MEDLINE ID number, and the OHSUMED ID
number. For most of the records in the collection, the
abstract field is also present, but for about 1/3 no
abstract is available. The abstracts that are present in
the records are truncated, some at (roughly) 250 words
and others at 400 words. (When truncated, they are

* The OHSUMED collection is available via anonymous

ftp from medir.ohsu.edu.

 4

marked as such.) In our use of the records, we used all
of the available data, though we also tried testing
without the abstract field for comparison (see below).

The queries in the OHSUMED query file are not
necessarily the actual strings used to search the data, but
are descriptions of the information that was being
sought. For each query, several people tried different
approaches to retrieve the desired information, and the
documents retrieved by the query attempts were
collected and judged for relevance. The total number of
query-document pairs that were judged is 16,140. The
other documents in the collection do not have associated
judgments, but are less likely to be relevant to the
queries because they were not retrieved.

The Similarity Ranking Algorithms rank text strings
(e.g. the OHSUMED documents) according to their
relevance to a target text string. The data provided with
the OHSUMED collection does not directly indicate
which documents are related to which other documents.
However, it seems reasonable to make the assumption
that the set of documents that have been judged relevant
to a particular query are also relevant to one another.
This might not be true in every case, but it seems likely
to be true in most cases, and that should be sufficient to
evaluate the ranking algorithms.

One thing the OHSUMED data does give us is the
complete set of retrieved results (within the OHSUMED
collection) from multiple attempts to search for
documents for a given query. This was was very
helpful, because it meant we did not need to write a
search system for the OHSUMED data. Instead, we
could use the queries in the query file, and take as their
results the documents specified in the data.

For a given query, we obtained a list of the
documents that were retrieved by it, and also
information about the relevance judgments made for
those documents. The relevance judgments were
converted to a numeric scale, with 2 being definitely
relevant, 1 being possibly relevant, and 0 being not
relevant, so that each document had a query-relevance
“score.” (In cases where multiple judgments were made
for a particular query-document pair, the scores were
averaged.) If a query did not have at least two definitely
relevant documents, it was skipped. The list of results
was then given to one of the similarity ranking
algorithms to rank, with the target text string being one
of the definitely relevant documents.

To assess how well the ranking algorithm performed,
a score was assigned based on how close to the top of
the list the definitely relevant documents were placed.
The ranked list was compared to a worst case list where
the definitely relevant documents were all at the bottom
of the list, and the definitely relevant documents were
regarded (for the purposes of the scoring) as having
moved from the worst case list position to the actual

ranked list position. Each definitely relevant document
was given one point for each notch moved in the right
direction, and -1 point for each notch moved in the
wrong direction. The sum of these points for the
definitely relevant documents was taken as a measure of
the ranking algorithm's performance.

In an ideal case, all of the definitely relevant
documents would be moved to the top of the list. For a
result set of size n with d definitely relevant documents,
the sum P for this ideal case would be:

ddnP *)(−=

To get the normalized score for the ranking algorithm
(so that the score would be independent of the result set
size), we divided the actual sum of the document scores
by the sum for the ideal case, which gave us a number
between 0 (worst case) and 1 (ideal case). (For more
detail on this scoring procedure, see Appendix III.)

That, then, is how the score for one ranking
algorithm was computed for one query, using one
definitely relevant document as the target text. We
repeated the process for each definitely relevant
document to get multiple scores for the algorithm for
that one query, and tried using each algorithm and each
query's result set (where possible), and were able to
obtain 2,126 scores for each algorithm.

4. Results

Table 1 shows, as an example, the test results
collected for the tenth query, for which there were five
definitely relevant documents, each of which was used
in turn as a target string for ranking the documents in the
retrieval set (the target string document included). For
space reasons, data is only shown for seven of the
algorithms. At the bottom of each algorithm's column
of scores are four rows of statistics that we computed for
each query. For each algorithm, we computed the
average of its scores (across the different target texts),
the standard deviation, the number of times that
algorithm outperformed all other algorithms being tested
(the “Win Counts”), and the percentage of the time that
the algorithm “won.” (In the case of a tie, both
algorithms were considered to win, which means that
the percentages do not add to 100%.) The winning score
for each trial is shown in bold.

4.1. Results for All Queries

The statistics for all 2,126 trials are shown in Table
2. The column and row headings have been switched in
this table with respect to Table 1. These results are
arranged in order from the highest average to the lowest.

 5

Table 1: Sample Test Scores for OHSUMED Query #10

Target
OHSUMED ID

Vector SW,
IDF, PML

Set
Ranker

Vector
SW

Aslam-
Frost

Vector SW,
N, IDF, PML

Vector SW,
N, IDF, TF

Word
Length

6746 0.8267 0.66 0.7933 0.7867 0.9133 0.8067 0.6467
57590 0.8133 0.66 0.7467 0.7733 0.9133 0.78 0.64

111278 0.9067 0.6867 0.6733 0.82 0.98 0.8 0.7
310557 0.94 0.68 0.8 0.9867 0.96 0.9 0.6467
347443 0.9267 0.7 0.66 0.82 0.9933 0.92 0.72

Average 0.8827 0.6773 0.7347 0.8373 0.952 0.8413 0.6707
Std. Dev. 0.0586 0.0174 0.0656 0.086 0.0372 0.0638 0.0367

Win Counts 0 0 0 1 4 0 0
Win Percentages 0 0 0 20% 80% 0 0

Table 2: Summary of Results For All Queries

 Average
Score Std. Dev. Wins Win

%
1 Word Length 0.6677 0.1106 904 43%
2 Aslam-Frost 0.6583 0.1067 466 22%
3 Set Ranker 0.6515 0.1100 223 10%
4 Vector SW, N, IDF, PML 0.6334 0.1064 151 7.1%
5 Vector SW, IDF, PML 0.6286 0.1037 30 1.4%
6 Vector SW, N, IDF, TF 0.6252 0.1028 38 1.8%
7 Vector SW 0.6246 0.1068 131 6.2%
8 Vector SW, IDF, TF 0.6168 0.1009 64 3.0%
9 Simple Vector 0.6065 0.1074 157 7.3%

Table 3: Summary of Results For All Queries, Without Using
Abstracts

 Average
Score Std. Dev. Wins Win

%
1 Word Length 0.69216 0.10742 1,109 52%
2 Set Ranker 0.67992 0.10596 425 20%
3 Aslam-Frost 0.65967 0.10544 326 15%
4 Vector SW,N,IDF,TF 0.61925 0.10215 53 2.5%
5 Vector SW,N,IDF,PML 0.61731 0.10207 46 2.2%
6 Simple Vector 0.61725 0.10542 65 3.1%
7 Vector SW 0.61717 0.10776 70 3.3%
8 Vector SW,IDF,TF 0.61536 0.10094 40 1.9%
9 Vector SW,IDF,PML 0.61385 0.10096 39 1.8%

 6

Table 5: Differences Between Algorithms
(Abstracts Excluded, c.f. Table 3)

 1 2 3 4 5 6 7 8
9 D D D - - - - -
8 D D D - - - -
7 D D D - - -
6 D D D - -
5 D D D -
4 D D D
3 D D
2 D

4.2. The Effect of Abstracts

To test the effect of the documents’ abstract fields on
the performance of the algorithms, we also ran the tests
using all of the OHSUMED fields except the abstract.
The results of those tests are presented in Table 3.

5. Analysis of Results

5.1. Checking that the Distributions are Normal

In order to make sure that the standard deviations are
meaningful, we created scatter plots of the distributions
for several of the ranking algorithms' score sets. The
result of one of those scatter plots is shown in Figure 1.
The plot is using a bin size of 0.01 to group similar
scores together.

Figure 1: A plot of the distribution of scores obtained

with the "simple vector" algorithm

All of the plots appeared to roughly follow the shape
of a normal distribution, so calculating standard
deviations was deemed appropriate.

5.2. Testing for Statistical Differences

The standard deviations for the algorithms' average
scores produce ranges that all overlap each other, but
that does not necessarily mean that the differences
between the average scores are not significant. Using
formulas and a table found in a handbook from NIST
[9], a Perl script was written that would determine
whether two averages were statistically different.* This
test involves some chance of error, but the script was
designed so that if it found two averages to be different,
there would be a 95% confidence in that result. Using

* Available on the web at:
 http://irvis.nlm.nih.gov/cgi/compareAvgs.pl.

 Contact the authors for the source code if desired.

that test, we found that some of the averages really are
better than the others.

The following tables summarize the results from the
test script, using the data for each ranking algorithm.
The column and row labels for tables 4 and 5 are the
numbers assigned to the algorithms in tables 2 and 3,
respectively. (Note that the ordering in tables 2 and 3
are slightly different, so the numbers are not the same
between tables 4 and 5.) A "D" in a table box means the
averages for the algorithms represented by the row and
column are different (with 95% confidence.) A "-" in a
box means the averages were not shown by the test to be
different. Table 4 compares the average scores obtained
from the tests that used abstracts (Table 2), while Table
5 compares the averages for the tests where abstracts
were not used (Table 3).

The same type of analysis can be done to evaluate the
difference in the algorithms’ performance between the
two test runs. The following table indicates the effect of
removing the abstract as a field to be considered. In the
second column, a value of “Improved” means that there
was a statistically significant improvement in the scores

Table 4: Differences Between Algorithms
(Abstracts Included, c.f. Table 2)

 1 2 3 4 5 6 7 8
9 D D D D D D D D
8 D D D D D D D
7 D D D D - -
6 D D D D -
5 D D D -
4 D D D
3 D D
2 D

 7

as a result of leaving out the abstract. A value of "-"
means the difference between the scores was not found
to be significant, and a value of “Degraded” means that
leaving out the abstract significantly hurt the algorithm's
performance.

6. Conclusions

Several conclusions can be drawn from the analysis.
First, the Word Length algorithm did significantly
better, on average, than any of the other algorithms
tested. This is interesting, because with the exception of
the Set Ranker algorithm and perhaps the Simple Vector
algorithm, the Word Length algorithm is simpler than
the others. Simpler algorithms generally mean faster
algorithms, and some basic time tests of our algorithms
confirmed that, except for the Set Ranker, the Word
Length ranker was faster than the others.* Both in terms
of accuracy and speed, for this application, Word
Length appears to be superior.

Second, removing the abstract significantly helped
the two set-based algorithms (Set Ranker and Word
Length), but generally hurt the vector-based algorithms.
It is likely that the set-based algorithms are more
sensitive to the "noise" terms in abstracts which are not
representative of the subject, and that removing the

* The ranking times of course depend on the efficiency of

the code implementing the algorithms. However, the Simple
Vector algorithm, which does not even perform normalization
or stop word elimination, was still found to be slower than
Word Length even after efficiency improvements had been
made that cut its time in half. The improvement in speed of
Word Length over Simple Vector is a small, but significant
amount. However, once the extra term weights were added in
to test the Vector SW,N,IDF,PML algorithm, the Word Length
algorithm was found to be more than three times faster.

abstract gives more weight to the title terms, which are
usually carefully chosen to represent the topic of the
article. The vector-based algorithms, on the other hand,
have term weights which can handle the noise terms to
some extent, and therefore some of them are able to
benefit from the inclusion of the abstract. The notable
exception to this is the Simple Vector algorithm, which
did not use any term weights, and therefore reacted the
same way to noise terms as did the set-based algorithms.

Third, the fact that the differences were small relative
to the standard deviations, combined with the fact the
best average score was under 0.67 (with abstracts
included), suggests that perhaps the testing strategy
employed had some weaknesses. It would have been
nice if there had been a broader range in average scores.
Also, given that the score produced by a random ranker
(which we implemented) results in an average score of
0.5, we would have been happier to see scores of 0.8 or
0.9. (However, at the very least, we can be pleased that
all the rankers did do much better than a random
ranker.) Two assumptions that were made could have
resulted in the lower scores:

1. Documents judged definitely relevant to a
particular query are relevant to each other.
This is certainly not true all of the time, and
although we may have been correct in banking
on its being true most of the time, this
assumption would have resulted in the
algorithms having imperfect data to process,
which would have resulted in lower scores. An
alternative approach was tried that modified
this assumption (see Appendix I), but the
results were quite similar.

2. Documents with similar subjects share
similar terms. This is a common Information
Retrieval assumption, because the only data
you have for deducing a document's subject is
its term set. As with the first assumption, the
fact that this does not always hold true would
result in lower scores. Some additional
accuracy might have been attained if synonyms
were considered, but we have not attempted
that primarily because we anticipated that it
would significantly slow down the algorithms.

Finally, it is interesting to note, for the Vector-based
approaches, which term weights significantly improved
the score. Three things stand out:

1. When abstracts are included, the use of stop
words (Vector SW) resulted in a significantly
better average than the Simple Vector
algorithm. This is not too surprising, but it is
good to see the confirmation.

Table 6: Effect of Excluding the
Abstract

Algorithm Impact
Word Length Improved
Aslam-Frost -
Set Ranker Improved

Vector SW,N,IDF,PML Degraded
Vector SW,IDF,PML Degraded
Vector SW,N,IDF,TF -

Vector SW Degraded
Vector SW,IDF,TF -

Simple Vector Improved

 8

2. Tables 2 and 4 show that when abstracts are
included, normalizing the vectors helps in at
least some of the cases. Our significance test
did not indicate a significant difference
between algorithms 4 & 5 (Vector
SW,N,IDF,PML, Vector SW,IDF,PML).
However, that test was not designed to prove
that there was no significant difference
between the two, so it is possible that
normalization helps even in that case.

3. The use of the PML (PubMed's local) term
weight instead of TF resulted in significant
improvements, as long as the abstracts were
included in the data analyzed by the
algorithms.

7. Appendix I: Alternate Evaluation
Strategies

After considering the first possible weakness cited
above in the conclusions, we decided to try a different
approach in evaluating the performance of the ranking
algorithms. We redesigned the evaluation software and
divided the evaluation process into three pieces:

1. The assignment of numeric scores to query-
document pairs, based on the relevance of the
document to the query that retrieved it. The
judgments were already made as a part of the
OHSUMED data, so this step just required a
conversion from non-numeric judgments to a
numeric score.

2. The assignment of numeric scores to
document-document pairs to indicate the
relevance of the documents to each other.
These scores were based on the query-
document scores assigned in the first step. It
was not necessary to do this for all document
pairs, but only for the pairs where one
document was a selected target for the ranking
algorithms, and the second document was in
the same result set for a given query.

3. The assignment of a score to an algorithm's
ranking of the documents for a given query and
target document, to measure how closely the
algorithm's ranking matched the ideal ranking.
The ideal ranking was defined as the ranking
resulting from ordering the documents in a
query's result set according to their document-
document scores for the given target document.

7.1. The Second Strategy

In the first evaluation strategy (used in the main body
of the paper), steps 1 and 2 were essentially the same.
That is, for a given target document and query, a
document’s document-document score was the same as
its query- document score. In the new strategy, the idea
was to use additional judgment information from the
OHSUMED data about the two documents. In
particular, we made the document-document judgments
independent of a particular query by combining the
judgment data for any query in which both documents
appeared in the result set.

In the second strategy, all query-document scores
were between 0 and 1, and the product of two query-
document scores taken from the same query was
regarded as statement about the probability that those
two documents were related to each other. In cases
where there was more than one query q that retrieved
both documents, the probability scores pq for each query
were combined into an overall probability P using the
formula:

)1(1 ∏ −−=
q

qpP

This formula results in a probability that is always
greater than or equal to any of the individual
probabilities. This probability P was taken as the
document-document score. We adjusted the query-
document score numbers to get document-document
scores that were to our liking, and eventually settled on
0.9 for a document "definitely relevant" to the query, 0.6
for a document "possibly relevant" to the query, and 0.3
for a document that was not relevant.

Hopefully an example will make this a little clearer.
Suppose you have two documents, whose OHSUMED
ID numbers are 65403 and 12293, and that these
documents appear in the result set for query 65 with
query-document judgments "d" (definitely relevant) and
"d", respectively. Each of these gets a query-document
score of 0.9, and if that were the only query those two
documents both appeared in, their document-document
score would be 0.9*0.9 = 0.81.

Now, suppose you have those two documents
appearing together in three queries, with the following
query-document (Q-D) scores:

Query # Q-D for 65403 Q-D for 12293
65 d (= 0.9) d (= 0.9)
91 p (= 0.6) n (= 0.3)
92 n (= 0.3) n (= 0.3)

In this case, the three probabilities obtained for each
query would be 0.81, 0.18, and 0.09, and these would be

 9

combined using the formula above to get an overall
probability of 0.86. (The exception to this method was
when a document was being compared against itself for
relevance. In that case, the document-document score
was fixed at 1.0)

This strategy also required a change to the way a
score was calculated for an algorithm’s ranking of
documents for a query. In this new approach, it becomes
difficult to identify a sub-group of documents (such as
the definitely relevant documents in the former strategy)
which the ranker should move to the top of the list.
Instead, we opted to consider the ranker's ordering of all
of the documents in a query's result set.

An algorithm's ranked list of documents, with the
most relevant document to the target first, was converted
into a list of document-document scores. This list was
then sorted to the ideal case (in which the document-
document scores are arranged from highest to lowest) in
a way that kept track of how the list's elements' indices
had shifted in the list. The number of index positions
each element had shifted was added to get a total
number of points D. We also calculated the number of
points Dmax that would have resulted from going from
the worst case ranking to the ideal case*, and then the
ranking score was taken to be:

max
1

D
DS −=

7.1.1. The Second Strategy: Results

The algorithm scores obtained by this second
evaluation strategy are shown below in table 7. The test
runs that produced these numbers included the abstract
field in the data given to the rankers. Because this
analysis was done prior to our learning of the Aslam-
Frost algorithm, that algorithm was not included in the
testing.

As is evident on comparison with Table 2, this
evaluation strategy did not yield the general
improvement in the averages we were hoping for. In
fact, in all cases it slightly lowered the scores and
increased the standard deviations. On the positive side,
it is good to see that that this strategy produced an
identical ordering of the rankers as did the first strategy.
(The algorithms, arranged according to their average
score, show up in the same order in Tables 2 and 6.)

* We were unable to prove that the number of points

obtained in shifting the elements from a worst case ranking to
an ideal case ranking results in the maximum number of
points, as much as that seems to make sense. We were able to
prove that swapping any pair of elements in the worst-case
ordering will not result in a higher number of points.

This increases our confidence in the accuracy of the
results produced by the first strategy.

Table 7: Summary of Results For All Queries,

Second Evaluation Strategy

 Average
Score

Std.
Dev. Wins Win

%
1 Word Length 0.6384 0.1187 1,220 57
2 Set Ranker 0.6198 0.1178 272 13

3 Vector
SW,N,IDF,PML 0.5977 0.1224 192 9.0

4 Vector
SW,IDF,PML 0.5905 0.1199 54 2.5

5 Vector
SW,N,IDF,TF 0.5887 0.1199 62 2.9

6 Vector SW 0.5883 0.1178 134 6.3

7 Vector
SW,IDF,TF 0.5794 0.1177 78 3.7

8 Simple Vector 0.5702 0.1148 128 6.0

7.2. The Third Strategy

The third strategy we tried is the same as the second
except for the final piece of the evaluation process, the
assignment of a score to the algorithm's ranking. As in
the second strategy, the ranked list of documents
returned by the ranking algorithm was converted into a
list of document-document scores, and compared to an
ideal case ordering of those scores. In this case though,
the comparison was made by summing the differences
between corresponding elements of the two lists. More
formally, let A be the list of document-document scores
as obtained from the ranker, and let B be the ideal case
list, defined as:

),...,(10 naaaA = and),...,(10 nbbbB =

Then we computed a number of points D for A's
distance from B, and a number of points Dmax for the
worst case ordering's distance from B, with the
formulas:

∑
=

−=
n

i
ii baD

0
 and ∑

=
−−=

n

i
ini bbD

0
max

From D and Dmax, the algorithm's score S is
computed using the same formula as for the second
evaluation strategy (see above).

 10

7.2.1. The Third Strategy: Results

Unlike with the first two strategies, which gave a
random ranker a score of roughly 0.5, the third strategy
gave a random ranker a score of approximately 0.3.
From that one might expect that the scores for the other
algorithms would also be lowered by about 0.2, and that
seems to be the case. Table 8 shows how the algorithms
were scored by this third approach. Abstracts were
included in the data given to the ranking algorithms.

Table 8: Summary of Results For All Queries, Third

Evaluation Strategy

 Average
Score

Std.
Dev.

Win
s

Win
%

1 Word Length 0.4569 0.1027 979 46
2 Set Ranker 0.4407 0.1014 384 18

3 Vector
SW,N,IDF,PML 0.4197 0.0939 220 10

4 Vector
SW,IDF,PML 0.4130 0.0935 131 6.2

5 Vector
SW,N,IDF,TF 0.41022 0.0916 96 4.5

6 Vector SW 0.4091 0.1048 227 11

7 Vector
SW,IDF,TF 0.4005 0.0929 124 5.8

8 Simple Vector 0.3957 0.1013 167 7.9

Even if one adds 0.2 to these scores, they are still
slightly below those obtained by the first strategy,
though the standard deviations are slightly improved.
However, once again we obtained the identical ordering
of the algorithms, lending further support to the
conclusion that the algorithms really do stack up against
each other as listed. It should be noted though that
although the scores appear in the same order, whether or
not two algorithms' scores are statistically different can
be affected by the choice of evaluation strategy. For
example, while the scores listed in Table 2 for
algorithms 3 and 4 were not shown to be statistically
different (see Table 4), the scores for those same two
algorithms in Table 8 (using the third evaluation
strategy) are statistically different.

7.3. Alternate Evaluation Strategies:
Conclusions

Neither of these alternate evaluation strategies were
able to improve the overall scores. It may be that the
fault for the lower numbers does not lie with the
evaluation strategy, but in some other area. There are at
least four other possible explanations:

1. Faults with the data set: Some of the query-
document pairs were judged for relevance
multiple times, and the judgments for a given
pair were not always in agreement. Relevance
judgments are subjective, and people make
mistakes.

2. Limitations of the data set: The data set
provides query-document judgments; any
extrapolation from query-document judgments
to document-document judgments will be
rough.

3. Limitations of the algorithms: It may be that
other similarity ranking algorithms not
evaluated here would have performed better.

4. Problems with subject matching: As
mentioned above, the assumption that
documents with similar terms are about the
same subject (and vice-versa) is not always
true.

8. Appendix II: On the Vector-Based Model

This is a slightly more detailed description of the
vector model than was provided in section 2. In the
vector model, you consider the set of unique terms that
exist in all of the text strings being compared. A
particular text string is then represented as a vector, each
of whose elements indicates whether a particular term
occurs in that string. If the term is not present, the
element is a 0; if the term is present, the element is
(ignoring term weights for the moment) a 1.

For example, suppose our collection of text strings
consists only of the two strings,

S1 = “lettuce tomato carrots spinach”
S2 = “tomato carrots onion onion”

There are five unique terms in the set. We chose an
ordering for the terms, so that there will be a particular
term associated with each index in the vectors. Let's
pick the ordering:

(lettuce, tomato, carrots, onion, spinach)

Then the two strings S1 and S2 would have the
corresponding vectors V1 and V2:

V1 = (1, 1, 1, 0, 1)
V2 = (0, 1, 1, 1, 0)

Although it is difficult (impossible might be a better
word) to imagine a five-dimensional space in which
these vectors can be plotted, one can easily imagine the
two-dimensional plane that contains the two vectors,

 11

and think two-dimensionally about the angle that lies
between them. If the strings were identical, the vectors
would be the same, and the angle between them would
be zero. If the vectors did not share any terms, the angle
between them would be 90 degrees. (To see that,
consider a list of just two terms, and the case where the
two vectors are (0, 1) and (1, 0)). It therefore makes
sense to consider the angle, or the cosine of the angle, as
a measure of how closely related the two strings are.

The cosine of the angle between two vectors of n
elements can be calculated by taking the dot product and
dividing by the lengths of the vectors:

∑∑

∑

==

==
⋅

=
n

i
i

n

i
i

n

i
ii

ba

ba

VV
VVangle

1

2

1

2

1
21
21)cos(

where the ai are the elements of V1 and the bi are the
elements of V2.

Often some sort of "term weight" will be used with
the vector model. A term weight would have the effect
of scaling the elements of the vectors in some way, to
give certain terms more weight (making them have a
bigger impact). For example, suppose we applied a term
frequency weight that replaced the 1's in the vectors
with a count of the number of times the term occurred in
the corresponding string. In our example, the only
duplicate word is “onion” is S2, so V1 would stay the
same but V2 would become

V2 = (0, 1, 1, 2, 0)

This changes the length of V2 and its relative angle
with V1. In this case, it moves V2 further away from
V1 because "onion" is now emphasized and V1 doesn't
have it.

9. Appendix III: On Scoring An
Algorithm's Ranking

This section provides more detail on the procedure
used for assigning a score to a ranking returned by one
of the similarity algorithms. The procedure here is the
one mentioned in the main body of the paper, as
opposed to the two alternate strategies mentioned in
Appendix I. The discussion that follows assumes that
the explanation in the main body of the paper (under the
section “3. Testing the Algorithms”) has already been
read.

Suppose you have 5 documents, u, v, x, y, and z,
which constitute the complete result set returned by a
particular query. Also suppose that the query-relevance
scores (based on the OHSUMED judgments) are: u=1,
v=2, x=0, y=1, and z=2. Let us take v as the target
document for the ranking, and suppose that a given
ranker, upon examining the text of the documents,
returned them in the following order (from most related
to v to least related):

(x, v, u, z, y)

We now consider the list of query-relevance scores,
R, that correspond to this ordering of the documents.
This would be:

R = (0, 2, 1, 2, 1)

The ideal ordering,,I, would be :

I = (2, 2, 1, 1, 0)

And the worst-case ordering, W, would be:

W = (0, 1, 1, 2, 2)

R is then regarded as having been created by shifting
the 2’s (the definitely relevant documents) away from
the W positions and toward the I positions, and the
ordering in R is given a number of points equal to the
number of places the 2’s have shifted. (For this
evaluation strategy, we don't consider the other
numbers.) Depending on how you map the 2's to each
other, the number of points each 2 gets varies, but the
total is the same. Picking one of the options, let’s say
that the first two is one position off, and the second 2 is
two positions off. This gives R a total of three (1+2)
points.

So that we can have a score whose size is
independent of the number of documents in a particular
query's result set, we normalize the number of points by
dividing by the maximum number of points. The
maximum number of points occurs when R is in the
ideal case scenario with all definitely relevant
documents (2's) being on the far left. We can derive the
general formula for the maximum points as follows.
Suppose we have a worst case ordering of n elements
with d definitely relevant scores at the far right, as
shown below.

 12

In reordering the list to the ideal case, each of the 2's gets shifted to the far left as shown below.

Each 2 is shifted by n-d places. Since there are d 2's,
that gives us a total number of points P of:

ddnP *)(−=

In our example, we have n=5 and d=2, so P=6. This
would mean that the ranking R gets a score of 3/6 = 0.5.

References

[1]http://www.ncbi.nlm.nih.gov/entrez/query/static/com
putation.html, 6/4/2003.

[2] G. Salton and M. E. Lesk. Computer Evaluation of
Indexing and Text Processing. In Journal of the ACM,
15(1):8-36, 1968.

[3] J. A. Aslam and M. Frost. An Information-theoretic
Measure for Document Similarity. In Proceedings of
the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 449-450, 2003.

[4] D. Lin. An Information-Theoretic Definition of
Similarity. In Proceedings of International Conference
on Machine Learning, 1998.

[5] W. John Wilbur and Yiming Yang, An Analysis of
Statistical Term Strength and its Use in the Indexing and
Retrieval of Molecular Biology Texts. Comput. Biol.
Med., Vol. 26, No. 3, 1996, p. 210.

[6] Kim W, Aronson AR, and Wilbur WJ, Automatic
MeSH Term Assignment and Quality Assessment. 2001
AMIA annual symposium proceedings, p. 319. (This
formula was referenced by [1].)

[7] Wilbur & Yang, p. 211

[8] W. Hersh, C. Buckley, T. J. Leone, D. Hickam.
OHSUMED: an interactive retrieval evaluation and new
large test collection for research. In Proceedings of the
17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 192-201, 1994.

[9] NIST/SEMATECH e-Handbook of Statistical
Methods,
http://www.itl.nist.gov/div898/handbook/prc/section1/pr
c13.htm, 5/29/2003.

21 3 d n-d+1 n-d+2 n-d+3 n

2 2 2 2

21 3 d n-d+1 n-d+2 n-d+3 n

2 2 2 2

